The Blow Up Method for Brakke Flows: Networks Near Triple Junctions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up criterion for nematic liquid crystal flows

In this paper, we establish a blow up criterion for the short time classical solution of the nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution of nematic liquid crystals, in dimensions two and three. More precisely, 0 < T∗ < +∞ is the maximal time interval iff (i) for n = 3, |ω|+|∇d|2 / ∈ Lt L ∞ x (R × [0, T∗]); and (ii) for n = 2, |...

متن کامل

Blow-Up of Test Fields Near Cauchy Horizons

The behaviour of test fields near a compact Cauchy horizon is investigated. It is shown that solutions of nonlinear wave equations on Taub spacetime with generic initial data cannot be continued smoothly to both extensions of the spacetime through the Cauchy horizon. This is proved using an energy method. Similar results are obtained for the spacetimes of Moncrief containing a compact Cauchy ho...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

A blow-up criterion in terms of the density for compressible viscous flows

We study an initial boundary value problem for the two-dimensional Navier-Stokes equations of compressible fluids in the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the density only. Namely, if the density is away from vacuum (ρ = 0) and the concentration of mass (ρ = ∞), then a local strong solution can be continued globally in time.

متن کامل

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2016

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-016-0981-3